flexiblefullpage -
billboard - default
interstitial1 - interstitial
catfish1 - bottom
Currently Reading

5 innovations in high-rise building design

High-rise Construction

5 innovations in high-rise building design

KONE's carbon-fiber hoisting technology is among the breakthroughs named 2013 Innovation Award winners by the Council on Tall Buildings and Urban Habitat.


By CTBUH and BD+C Staff | July 9, 2013
high rise building

The Poly Corporation Headquarters in Beijing features a unique design component, innovations in high-rise building design. 

  

The Council on Tall Buildings and Urban Habitat has named two winners and three finalists of its 2013 Innovation Award. The highlighted innovations stand to revolutionize the technology, sustainability, and efficiency of high-rise buildingĀ construction and operation, according to the organization.
Ā 
The Innovation Awards will be presented at the CTBUH 12th Annual Awards Ceremony and Dinner at the Illinois Institute of Technology, November 7, in the iconic Crown Hall, designed by Mies van der Rohe.
Ā 
Ā 
Here's an overview of the winners and finalists (descriptions and images courtesy CTBUH):
Ā 
Ā 
Ā 
Ā 

1. BSB Prefabricated Construction Process

Ā 
The Broad Sustainable Building (BSB) Prefabricated Construction Process captured the industryā€™s attention when Broad Group constructed T30, a 30-story hotel building in 15 days in Changsha, China, using pre-assembled components.
Ā 
The process uses a factory-fabricated steel structure system and on-site installation, using flanges and high-strength bolts to join the construction members. It also incorporates integrated, installable floor slabs, light wallboard, and other prefabricated materials.
Ā 
It has the advantages of magnitude-9 earthquake resistance, five times the energy efficiency of a conventionally built structure, at between 10 and 30 percent lower cost. The process produces less than 1 percent of the waste when compared with conventional site-built construction.
Ā 
ā€œThis is a clear and innovative way of looking at tall building construction," said Jeanne Gang, awards jury chair and principal of Studio Gang Architects. "Fundamentally rethinking how we build a tall building is fascinating, and this serves as a great platform for the next stage of development.ā€
Ā 
Ā 
Ā 

Ā 

2. KONE UltraRope forĀ high rise buildings

Ā 
Ā 
KONE UltraRope is a new carbon-fiber hoisting technology, the weight and bending advantages of which effectively double the distance an elevator can travel in a single shaft ā€“ to 1,000 m (1 km).
Ā 
Comprised of a carbon fiber core and an epoxy-based high-friction coating, KONE UltraRope is extremely light, meaning elevator energy consumption and machine room size in high-rise buildings can be cut significantly.Ā 
Ā 
The drop in rope weight means a reduction in elevator moving masses ā€“ the weight of everything that moves when an elevator travels up or down, including the hoisting ropes, compensating ropes, counterweight, elevator car, and passenger load.Ā 
Ā 
Currently, elevators are limited to a single-shaft height of Ā 500 meters, the point at which the mass and thickness of steel rope makes further height impractical. With UltraRope, elevators can travel up to 1,000 meters without the need for transfer lobbies.
Ā 
ā€œThis is finally a breakthrough on one of the ā€˜holy grailā€™ limiting factors of tall buildings ā€“ that is, the height to which a single elevator could operate before the weight of the steel rope becomes unsupportable over that height," said awards juror and CTBUH Executive Director Antony Wood. "So it is not an exaggeration to say that this is revolutionary. However, it is not just the enablement of greater height that is beneficial ā€“ the greater energy and material efficiencies are of equal value.ā€
Ā 
Ā 
Ā 

Ā 

3. Megatruss Seismic Isolation Structure

Ā 
The jury awarded the Building Team's use of a megatruss seismic isolation structure on the Nakanoshima Festival Tower, Osaka, Japan
Ā 
The designers of the multi-purpose high-rise in seismically active Japan were able to resolve two very different requirements in one building through the use of an intermediate structural solution that transfers forces safely through the transition.Ā 
Ā 
One part of the program was a concert hall, constructed out of reinforced concrete walls to form a rigid frame that supports sound isolation and acoustic performance. Above, the program called for offices, which are ideally column-free for maximum flexibility.Ā 
Ā 
The intermediate seismic isolation, comprised of a megatruss with diagonals, megacolumns, a belt truss, lead rubber bearings, and oil dampers, enables these contrasting requirements to coexist in the same building.
Ā 
ā€œThis innovative structural system allowed the designers to construct an unprecedentedly tall seismically isolated building," said awards juror David Scott, Lead Structural Director of the Engineering Excellence Group at Laing Oā€™Rourke. "It deserves recognition for integrating base isolation and transfer systems into isolated systems in a high seismic area.ā€
Ā 
Ā 
Ā 

Ā 

4. Raster FaƧade Precast Concrete System

Ā 
The jury awarded the Building Team's use of a raster faƧade precast concrete system as used in Tour Total in Berlin.
Ā 
The raster faƧade is a load-bearing precast concrete frame that eliminates interior columns, allowing floor-to-ceiling glass by way of triple-glazing with exterior retractable protective louvers. It also generates more usable floor area than other systems.Ā 
Ā 
The precast faƧade generates a ratio of 60 percent glazed to 40 percent closed surfaces, improving insulation values. Heating and cooling systems are integrated into suspended ceiling panels, which is more efficient than installing those systems in the floor.Ā 
Ā 
Precast concrete is also an inherently fireproof building material, eliminating the need for additional fire protection.Ā 
Ā 
ā€œThis innovation shows that load-bearing precast concrete offers an alternative to the glass curtain wall for tall building construction,ā€ said awards juror Richard Cook, Partner, CookFox Architects.
Ā 
Ā 
Ā 

Ā 

5. Rocker FaƧade Support System

Ā 
The jury awarded the Building Team's use of a rocker faƧade support system in the Poly Corporation headquarters high rise building in Beijing.
Ā 
The Poly Corporation Headquarters features a unique design component that was created specifically for this building ā€“ The Rocker, which supports the world's largest cable-net glass wall while actively releasing the effects of earthquakes and heavy winds. Additionally, it facilitates the suspension of an eight-story, lantern-like museum structure within the office buildingā€™s atrium.Ā 
Ā 
Structural analysis showed that the support for the 22-story-tall glass atrium wall could not be reasonably achieved using a conventional two-way cable net, but could be achieved if the 90-meter-high by 60-meter-wide enclosure was broken down into smaller segments. A cable-stayed system was introduced by using two large-diameter parallel strand bridge cables in diagonal fold lines while anchoring to the eight-story suspended lantern-like museum structure.Ā 
Ā 
The museum structure acts as a counterweight for the cables, introducing pre-stress and providing the required stiffness to resist out-of-plane loads caused by wind on the cable-net. In addition to the diagonal cables used at the atrium glass wall, two additional cables and a Rocker were introduced at the rear of the museum structure to assist in its suspension.
Ā 
ā€œThis innovation could be adapted for use in other situations that might be encountered in unique high-rise buildings, where brace-like members might need to be freed from participation in the lateral systems of the structures,ā€ said Laing Oā€™Rourke's Scott.
Ā 
Photo by Terri Meyer Boake
Ā 
Ā 

For more, visit the CTBUH 2013 Innovation Awards landing page.

Ā 
Ā 
Ā 
Ā 

Related Stories

Codes and Standards | Apr 30, 2024

Updated document details methods of testing fenestration for exterior walls

The Fenestration and Glazing Industry Alliance (FGIA) updated a document serving a recommended practice for determining test methodology for laboratory and field testing of exterior wall systems. The document pertains to products covered by an AAMA standard such as curtain walls, storefronts, window walls, and sloped glazing. AAMA 501-24, Methods of Test for Exterior Walls was last updated in 2015.Ā 

75 Top Building Products | Apr 22, 2024

Enter today! BD+C's 75 Top Building Products for 2024

BD+C editors are now accepting submissions for the annual 75 Top Building Products awards. The winners will be featured in the November/December 2024 issue of Building Design+Construction.Ā 

75 Top Building Products | Dec 13, 2023

75 top building products for 2023

From a bladeless rooftop wind energy system, to a troffer light fixture with built-in continuous visible light disinfection, innovation is plentiful in Building Design+Construction's annual 75 Top Products report.Ā 

Sustainability | Nov 1, 2023

Researchers create building air leakage detection system using a camera in real time

Researchers at the U.S. Department of Energyā€™s Oak Ridge National Laboratory have developed a system that uses a camera to detect air leakage from buildings in real time.

Products and Materials | Oct 31, 2023

Top building products for October 2023

BD+C Editors break down 15 of the top building products this month, from structural round timber to air handling units.

Cladding and Facade Systems | Jun 5, 2023

27 important questions about faƧade leakage

Walter P Mooreā€™s Darek Brandt discusses the key questions building owners and property managers should be asking to determine the health of their building's faƧade. Ā 

Sponsored | Building Enclosure Systems | May 16, 2023

4 steps to a better building enclosure

Dividing the outside environment from the interior, the building enclosure is one of the most important parts of the structure. The enclosure not only defines the buildingā€™s aesthetic, but also protects occupants from the elements and facilitates a comfortable, controlled climate. With dozens of components comprising the exterior assemblies, from foundation to cladding to roof, figuring out which concerns to address first can be daunting.

Design Innovation Report | Apr 27, 2023

BD+C's 2023 Design Innovation Report

Building Design+Constructionā€™s Design Innovation Report presents projects, spaces, and initiativesā€”and the AEC professionals behind themā€”that push the boundaries of building design. This year, we feature four novel projects and one building science innovation.

Cladding and Facade Systems | Apr 5, 2023

FaƧade innovation: University of Stuttgart tests a ā€˜saturated building skinā€™ for lessening heat islands

HydroSKIN is a faƧade made with textiles that stores rainwater and uses it later to cool hot building exteriors. The faƧade innovation consists of an external, multilayered 3D textile that acts as a water collector and evaporator.Ā 

boombox1 - default
boombox2 -
native1 -

More In Category

Codes and Standards

Updated document details methods of testing fenestration for exterior walls

The Fenestration and Glazing Industry Alliance (FGIA) updated a document serving a recommended practice for determining test methodology for laboratory and field testing of exterior wall systems. The document pertains to products covered by an AAMA standard such as curtain walls, storefronts, window walls, and sloped glazing. AAMA 501-24, Methods of Test for Exterior Walls was last updated in 2015.Ā 




halfpage1 -

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021

Ā